Lipid Phase Separation and Protein-Ganglioside Clustering in Supported Bilayers Are Induced by Photorelease of Ceramide.
نویسندگان
چکیده
Photolysis of 6-bromo-7-hydroxycoumarinyl-caged ceramide was used to generate ceramide with spatial and temporal control in supported lipid bilayers prepared from mixtures of caged ceramide and phospholipids. The caged ceramide molecules are randomly distributed in fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, and upon photolysis with long wavelength UV light small ordered ceramide domains are formed that phase separate from the bulk fluid membrane. Irradiation of a spatially restricted area leads to the transient formation of ceramide-enriched gel phase domains that equilibrate via lipid diffusion with the surrounding unirradiated membrane. Photorelease of C16-ceramide in supported bilayers prepared from POPC, caged ceramide and the ganglioside GM1 (90:10:1 molar ratio) results in partitioning of a ganglioside-protein complex into the ceramide-enriched domains, modeling some aspects of ceramide's behavior in cells. The photo-uncaging strategy used here for delivery of ceramide in bilayers provides a novel and useful alternative to the enzymatic generation of ceramide in sphingomyelin-containing membranes. The ability to control membrane phase separation behavior and the clustering of membrane-anchored proteins illustrates the potential of photo-uncaging for studying the compartmentalization of ceramide in cellular membranes.
منابع مشابه
Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes.
Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which cer...
متن کاملEffects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure.
Alzheimer's disease (AD) is the most prevalent age-dependent form of dementia, characterized by extracellular amyloid deposits comprising amyloid β-peptide (Aβ) in the cerebral cortex. Increasing evidence has indicated that ganglioside GM1 (GM1) in lipid rafts plays a pivotal role in amyloid deposition of Aβ and the related cytotoxicity in AD. Despite recent efforts to characterize Aβ-lipid int...
متن کاملSphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from s...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملInteraction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy
Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 9 19 شماره
صفحات -
تاریخ انتشار 2013